
100%

C H A T G P T f r e e

30 Evolve your development!
QA PRO TIPS

INDEX

Introduction

Validation and creation of User Stories

Code quality assurance tools

Management of the code integration process in the repository

How to verify that quality requirements are achieved

Test automation

Test environments

Test integration in the development pipeline

Security audit processes and associated policy

List of browsers/OS supported by your application

Use of controlled deployment processes in production
environments

Defining quality control metrics in the application

Enable processes for monitoring, evaluation and prioritisation
of incidents in Production

About us

3

4

8

12

15

18

23

27

29

31

33

36

38

41

2

INTRODUCTION

Would you like to get better results in your projects by optimising
resources and improving Time-to-market?

In this ebook you will find 30 tips and practical strategies that
will help you face the most common obstacles in software
development, to achieve higher levels of excellence.

We've created this ebook with the challenges you face every day
in mind. Whether you are a developer, product manager or
quality manager.

Get ready to discover the keys that will take you to the next level.
Let's get started!

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

3

You will learn how to involve key users from the earliest
stages of software development, enabling you to
understand and address their needs more accurately.

With practical tips and examples, this chapter will guide
you to improve the quality of your user stories, thereby
optimising the development process and delivering
software that truly meets the demands of your users.

3 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

VALIDATION
AND CREATION
OF USER
STORIES

4

TIP

We must have a tool to ensure that the User Story has been developed
correctly. Acceptance Criteria are a great help for this purpose because
they allow us to better define the User Story and provide a validation
criterion for the User Story.

Providing good Acceptance Criteria increases confidence that the product
reflects our intentions, reduces the possibility of defects and speeds up
development, as rejections in Acceptance Testing and once in production
are less frequent.

No job should be considered completed unless it meets all the Acceptance
Criteria.

Acceptance Criteria are a set of conditions that describe the expected
behaviour once the user story has been developed. They are the
requirements against which we assess whether the development matches
our expectations from the end user's perspective.

Providing good acceptance criteria increases confidence that the product
reflects our intentions, reduces the possibility of defects and speeds up
development. Feedback rejections, once in production, should be less
frequent.

Use of guidelines or acceptance criteria to
validate user stories

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

INVEST is a mnemonic created to remember the characteristics of a
quality backlog item (PBI). This item is generally in User Story format,
fulfilling the following aspects:

Creating user stories under the INVEST principles2.

1.

5

I: Independent. Must have no or minimal dependency on other User
Stories.

N: Negotiable. Its content can be modified, extended or deleted
according to business needs.

V: Valuable. It must contribute clear value to the product, directly or
indirectly.

E: Estimate-able. We must be able to size it, estimate the effort required
to carry it out.

S: Small. It must be able to be done in hours, ideally within one working
day. This helps continuous integration and quick feedback. If the size is too
large, we should be able to break it down into smaller chunks.

T: Testable. It must be possible to test it to validate that its behaviour is as
expected.

TIP

Dependency between user stories, delaying deliveries, changing
scopes, etc.

Non-negotiable content, making development very rigid and difficult.

Results of little or no value, making it difficult to answer the question:
why is this HU necessary?

Poorly defined HU, complex to estimate, to be defined a posteriori with
the extra workload involved.

Extremely large tasks, which block members of the team for days,

Following the INVEST (Independent, Negotiable, Valuable, Estimate-able,
Small, Testable) principles when creating User Stories allows us to provide
them with features that will help us in their development. In case of not
following them, we can find ourselves with:

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

6

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

The Definition of Ready is an agreement between the team and the
Product Owner on what it means for a backlog item (usually called a PBI)
to be ready to be understood, assessed and executed.

Establishment of the DoR (Definition of Ready) to
create the stories.

Having a Definition of Ready speeds up the development of backlog items
by helping to have them defined before programming begins.

TIP

Difficulty or impossibility to test the HU, which increases the likelihood
of a bug appearing after deployment or in the future (detectable by
automated testing).

slow down code reviews, hamper continuous integration, etc.

3.

7

We will explore various tools that will help you improve
code quality in your software projects. We will talk about
static analysis tools, unit testing and TDD to identify and
correct errors in your code.

These tools will allow you to improve the readability,
maintainability and efficiency of your code, ensuring a
better quality end product.

4 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

CODE QUALITY
ASSURANCE TOOLS

8

Static code analysis allows the evaluation of the developed code without
the need to execute it. It is a test that should be performed automatically
before code developed in one branch is accepted in another. Usually it is
the continuous integration server that has a trigger that launches it. It is a
quick test to run and brings great value to continuous integration. It
provides great cost savings by anticipating problems and non-functional
errors.

TIP

Static code analysis tools

We recommend having a tool to validate the static code of a branch prior
to an integration. The configuration is not complex and obtaining relevant
information is very quick. With this information, it is also possible to
propose different "quality gates" policies and provide the development
pipeline with the criteria to stop them if necessary.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

A linter is a tool that analyses our code in real time as it is being written. By
means of a series of rules defined by the developer, it helps to follow the
best practices or style guides of our language and detect errors or
warnings that could cause compilation problems or bugs.

Using Linters in the Developer IDE

TIP

Generating quality software is difficult, not least because of the many
different variables that affect it and the almost infinite number of ways in
which the same thing can be done. We recommend that the development
team use tools that allow code to be generated in a common style,

4.

5.

9

TIP

Unit tests are tests of small functionalities that are executed very quickly,
always automatically. They are usually programmed by the developer in
order to ensure a correct implementation and future stability of his work.
This type of test is very efficient if they are well developed, as they can be
executed in a few seconds (ideally in less than 1 second) and in a global
way, offering quick feedback, something very desirable in agile
developments.

Use of unit tests during continuous integration

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Possibly one of the best bets for quality in a development team is the
commitment to create, maintain and extend unit test coverage. It is the
base of the classic Test Pyramid because they give us feedback very
quickly and are cheap to create and maintain, especially compared to User
Interface tests.

We strongly recommend integrating unit tests into the development
process by including them in the quality strategy.

good practices within the language and ultimately a product with the
highest possible quality. Configuring a linter in the IDE of the work
environment is one of the best alternatives, it is simple and has benefits
from the first moment.

TDD is a software programming practice in which, before programming
the functionality we want to implement, we write a test (in practice a unit

Use of TDD methodology

6.

7.

10

 test) that will validate it. As there is no code yet, the test will fail. Next, the
minimum code is developed that makes the test pass successfully. Finally,
that code is refactored and is ready for completion.

TIP

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Implementing TDD has several advantages. On the one hand, the mere
fact of thinking about the functionality to implement the test and that it is
minimal puts focus on how it will be used, unveils edge cases and
organises the code. It also reduces the development effort in mature
stages of the application, producing higher quality and in less time.

If the decision is made to start applying TDD, we recommend that you
contact someone with experience to guide you through the first steps.

11

The integration of code between different branches is a
basic aspect of ensuring software stability and quality.
We present two fundamental strategies to efficiently
manage branches, resolve conflicts and guarantee a
smooth integration.

2 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

MANAGEMENT
OF THE CODE
INTEGRATION PROCESS IN
THE REPOSITORY

12

A Merge request (also called Pull request in some tools) is a way to review,
test and approve a code change in the repository. It is possible to assign
the review to one or more team members, require approval or not under
certain rules, etc.

TIP

Use of Merge request and code review

Having a Merge Request policy in place will allow code developed by one
team member to be reviewed by others and reduce the likelihood of
design errors, defects, etc.

Another great advantage of implementing Merge Request is that it is a
great source of knowledge and training, by sharing different ways of
tackling a problem and programming the solution.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Format of the title, form of wording, maximum length, use of
prefixes....

Content of the description, format, size...

Size of the code content in the merge request, number of changes,
number of lines, number of files...

In addition to having the Merge Request review mechanism in place, it is
possible to have an agreement in the development team on the
characteristics of the Merge Request, such as for example:

Benefit from a unified approach on how to create
a Merge Request

8.

9.

13

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Difficulty in finding defects because there is too much code to review.
That Merge Request would be susceptible to being split into smaller
ones. This can lead to not finding some defects, as they are "hidden"
among so many lines or to complicate validation if the change affects
different functionalities.

Delaying the identification of a problem at the time of the review or at
the time of a subsequent postmortem analysis due to the existence of
different title formats and not being self-explanatory.

Increase review time by having to understand what the change does or
having to ask questions if there is no good description.

Not having criteria agreed by the whole technical team regarding how
Merge Requests should look like can lead to:

TIP

14

We will provide you with 2 strategies to ensure that your
product meets established quality standards. Learn how
to define clear and measurable quality criteria and how
to use effective tools and methods to assess compliance
with these requirements.

2 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

HOW TO VERIFY
THAT QUALITY
REQUIREMENTS
ARE MET

15

Acceptance criteria (AC) are a set of conditions that describe the expected
behaviour once the user story has been developed. They are the
requirements against which we evaluate whether the development
matches our expectations.

Validation that the acceptance criteria are being met can be carried out
only in the acceptance test itself by the Product Owner, Stakeholder or the
appropriate figure in your team ("classic" approach) or it can be carried
out at other points in the product lifecycle, such as during the
programming of the functionality.

TIP

Programmers check the "Acceptance Criteria".

We consider it essential that developers verify that the Acceptance Criteria
are met in the work they are doing. In this way, feedback in case
something does not work as expected will come much sooner and the
Acceptance Test is much more likely to be successful.

As a result, no development should be considered completed if, among
other things, it does not meet all the Acceptance Criteria.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

The Definition of Done, or DoD, is an agreement reached by a
development team on what it means for a release to be ready to be
deployed in Production.

Generally, this agreement encompasses aspects on three components:
functional requirements (user stories, acceptance criteria...) or business
requirements, quality (test coverage, defects...), and non-functional
requirements (performance, security, usability...).

Establishment of the Definition of Done (DoD)

10.

11.

16

TIP

We recommend drafting and having the Definition of Done document
available and iterating on it. It will help us to reduce the possibility of
deploying an incomplete, unsafe, inefficient, defective, etc. product.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

17

Find out how to reduce time and resources, performing
exhaustive tests with frameworks and automation tools.

6 practical tips that will give you the keys you need.
Identify and fix bugs quickly and efficiently, delivering a
higher quality end product to your users.

6 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

TEST
AUTOMATION

18

API tests, or service tests, validate their functionality, structure, reliability,
performance, security, etc., forming part of the integration tests. When it
comes to automating them, they are quicker to execute than User
Interface tests.

TIP

Automated API testing

We include the automation of API tests as part of the application
integration tests. We consider it very important to have coverage of these
tests to add a layer of confidence, especially as the number of APIs grows.
Thanks to its speed of execution compared to User Interface tests, we will
have a quick feedback of the state of the application, the possibility of
having a great functional coverage and a great ease of use.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

The integration test is the phase in which the communication interface
between software modules that we have previously been able to test in
isolation is tested. In this way, the modules are "integrated" and the whole
is tested as a unit.

Automatic integration tests

TIP

Integration tests are an essential part of a testing strategy, because they
reduce the risk of errors appearing when connecting modules that, in
isolation, we have validated that they work correctly. We recommend
including them in the test plans because although they are slower to
execute than unit or contract tests, they will allow us to get faster feedback
than User Interface tests.

12.

13.

19

There are applications that, by their nature, do not require User Interface
testing simply because they do not have an interface. However, most
commonly, there is an interface with which we interact. The functionality
offered by this interface can be validated with manual tests and with
automatic tests that simulate the action of a user. Due to their nature,
these automatic tests are usually slow to run and costly to maintain, so it
is essential to have a good selection criteria of which functionalities will be
covered by them.

TIP

Automatic User Interface tests

If the application has a user interface, we recommend performing a
battery of tests to validate that the user interface meets the acceptance
criteria for which it was designed. It is possible that the unit, integration
and system tests "underneath" have been automated, but it is possible
that these tests indicate that everything is fine and yet a problem in the
frontend or in the communication between the frontend and the backend
causes the application to fail.

The new technologies have a wide functional coverage and are easy to
include in the continuous integration.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Performance tests are a type of non-functional test that evaluate the
response time, stability, reliability, scalability, etc. of a system or
application under certain loads. These tests do not validate functional
aspects, but they allow us to know under what circumstances the system

Performance testing

14.

15.

20

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

is going to offer a better or worse user experience, allowing us to debug it
by finding bottlenecks, inefficiencies in the code, etc... and thus be able to
size it correctly. By their very nature, they need a tool to be able to be
executed.

CONSEJO

We consider it vital for the user experience that systems that are going to
be subjected to variable access loads are subjected to performance tests
with the aim of detecting non-functional problems that are impossible to
find with other types of tests.

For this reason, we recommend developing, within the company's testing
strategy, test batteries oriented towards the performance of the
application and that these are included in the development pipeline.

Regression testing is a set of generally automated tests that ensure that
the existing functionality of the application has not been broken.

They cover the entire application to ensure that changes made in one
functional area have not affected others that, on paper, have not changed.

They are usually a selection of existing tests that run through virtually the
entire system. They also usually include tests that validate that certain
bugs found in the past do not happen again.

Regression tests16.

21

TIP

TIP

It is necessary in each release to ensure that core functionalities for the
business that have not been modified by the development of that release
continue to work correctly and that the defects detected and the historical
ones are not reproduced.

We recommend having a battery of this type of tests in the development
pipeline to increase confidence in the product to be deployed, being able
to block the pipeline if a defect is found in the code.

Experience has shown us that if automatic tests are not linked to a process
that launches them periodically or under a specific trigger (a commit, a
deployment...) they cease to serve the purpose for which they were
created and may possibly cease to be used and become obsolete.

Our recommendation is that all tests, including performance tests, should
be included at a point in the development cycle pipeline so that feedback
can be obtained at at least one point in the development cycle.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

By their very nature, performance tests need a tool to be run. This tool can
launch them on demand, periodically and/or within a CI/CD server pipeline
throughout the development cycle.

Performance tests17.

22

Discover the importance of test environments in
software development and how they can help you
ensure the quality of your applications.

We will discuss effective test environments that closely
mimic the production environment, allowing you to test
your software in realistic conditions before release.

3 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

TEST
ENVIRONMENTS

23

TIP

Testing is essential to any software development methodology. A weak
testing strategy can lead to buggy and flawed deployments. To mitigate
these, testing is necessary and testing needs to be executed in a dedicated
test environment.

We recommend having enough test environments to cover the types of
tests required by the application we are developing.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

A "test environment" simulates the production environment of an
application. There we can deploy versions of the application in order to be
able to carry out the tests that validate it.

Depending on the use to which it is put and the type of tests to be
performed, the maturity of the code it hosts, etc., they can be classified
into categories. For example: the development environment, the testing
environment, the staging environment or the UAT environment (also
called "pre-production").

With the use of techniques such as feature flagging, canary releasing, etc.,
development teams can carry out certain tests directly in Production.

Use of test environments other than the
production environment.

18.

24

TIP

Deployments in these environments should follow the same steps as we
need to do in production. In this way we will implicitly test the deployment
steps as well.

It is possible that there may be environments where some functionality is
missing that can be found in other environments. These undesired
situations must be controlled and we must establish a mechanism that
allows us to be sure that at all times we can launch in a non-production
environment any functional cycle that may occur in production.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Test environments are designed to, once the application has been
deployed, obtain behaviour and functionality as close as possible to that of
production. Often, due to technical limitations, test environments do not
have certain features that production environments do.

The test environment and the application
running in it have the same functionalities as in
Production.

19.

25

TIP

Current development methodologies, spurred on by Agile, encourage
development in heterogeneous groups, squads, Agile teams... These
teams generate versions of the application that must be quickly tested
both manually and automatically to obtain agile feedback.

Having multiple permanent environments implies a high fixed cost for
infrastructure, maintenance, management, etc. For this reason it is very
important to have the creation, use and removal of these test
environments automated, generally orchestrated by the CI/CD server.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Test environments are used for various types of testing. It may be that we
are interested in testing the latest development with a database similar to
the productive one, that we want to carry out a UAT with the Stakeholder
or that we need to carry out performance tests.

In all cases, it is recommended to have a tool that allows us to create and
configure an environment from scratch, install a specific release of the
application, have it operational and accessible for testing, generate a test
report and finally, eliminate the environment, thus freeing up resources.

Automatic activation and deactivation of test
environments with different versions of the
application.

20.

26

We must incorporate automated testing at every stage
of the development lifecycle, from build to deployment,
to ensure software quality at all times.

It is the CI/CD system, the various scheduled
development pipelines that orchestrate the execution of
these automated tests at the appropriate time.

1 TIP

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

INTEGRATION OF
TESTING INTO THE
DEVELOPMENT
PIPELINE

27

CI/CD stands for Continuous Integration and Continuous Deployment
or Continuous Delivery. It is a software development practice in which
code changes in the repository are carried out frequently and securely (CI)
by automating builds and testing.

From this code, ready-to-install releases can be automatically generated in
pre-production environments (C. Delivery). Many development teams stay
at this point, running the deployment in production manually.

Finally, we can reach a state of maturity where the code is automatically
deployed to production after a series of steps (C. Deployment).

Both CI and CD processes are carried out through a series of synchronised
actions in one or several pipelines, where code downloading, testing,
deployment, etc. are carried out.

TIP

Automating the integration of code and deployments to pre- and
production environments greatly streamlines the delivery of value to
development teams.

Additionally, CI/CD pipelines serve as the backbone for launching both
functional and non-functional tests on code and validating it as a release
candidate for production. In this way, tests are launched at the right place
and time depending on their nature. Static code tests before deployment,
service or integration tests before User Interface tests... And in the event
that one of them fails, the whole process can "harakiri" itself and send the
relevant notifications.

The speed of having a test or demonstration environment to respond in
the event of a rollback, or the use of Continuous Delivery pipelines to
achieve Continuous Deployment are other reasons for recommending the
development of CI/CD pipelines.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

28

Integration into development pipelines21.

A security audit consists of a series of analyses and tests to assess
the security status of an information system against a security
attack.

The objective is to detect vulnerabilities that could allow a third
party to cause damage to the company.

Because application code, company infrastructure, personnel
employed, etc., change over time, security audits must be carried
out periodically.

2 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

SECURITY AUDIT
PROCESSES AND
ASSOCIATED
POLICY

29

TIP

A security audit consists of a series of analyses and tests to assess the
security status of an information system against a security attack. The
objective is to detect vulnerabilities that could allow a third party to cause
damage to the company.

Since the code of the applications, the company's infrastructure, the
personnel employed, etc., changes over time, we recommend performing
periodic security audits to ensure that there is no breach in the system
and that the proposed actions of preventive measures, reinforcements,
corrections, etc., take effect.

The scope of these tests, their characterisation and periodicity will depend
on the current state of the application and should be one of the sections
of the quality strategy to be implemented.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

Regular security audits

30

22.

Security policy" according to RFC 2196 is defined as: "formal statements of
the rules to be followed by those who have access to an organisation's
technology and information assets".

It thus affects employees as well as suppliers or customers. It takes the
form of a set of documents that explain what is expected of all of them, in
order to prevent security incidents and reduce vulnerability.

Security policy documentation

TIP

Today it is virtually impossible to have a totally secure computer system.
However, we recommend having simple and clear security policies within
the reach of the people involved in the company's activity. In this way, we
will have the tools to protect ourselves from unauthorised access, prevent
errors or security oversights and, in general, minimise vulnerability.

23.

1 TIP

Knowing which browsers, operating systems (and their respective
versions) your application can support is crucial to ensure an
optimal user experience and maximise the accessibility of your
software.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

LIST OF
BROWSERS / OS,
SUPPORTED BY
YOUR APPLICATION

31

TIP

In case the developed product requires a browser and/or an operating
system for the user to be able to run it, we consider it very interesting to
indicate which combination of browsers and operating systems are
supported.

This clearly demarcates the line between what is a defect that requires
correction and what is an unsupported operation.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

The product may require a browser and/or an operating system in order
for the user to run the product.

In that case, the product design and testing validates that the product
meets the requirements under certain combinations of browsers and/or
operating systems.

32

List of supported browsers24.

Having a controlled deployment process coupled with effective
monitoring will allow us to identify possible incidents early on.

In this way, depending on their severity, we will be able to take
appropriate decisions: continue with the deployment even with the
incident, stop it, solve it and deploy again, perform a hotfix after the
deployment, etc.

4 TIPS

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

USE OF
CONTROLLED
DEPLOYMENT
PROCESSES IN PRODUCTION
ENVIRONMENTS

33

It allows code with unfinished features or features that you want to
activate on demand to be deployed to production. This makes it easier for
releases to go into production and features can be activated when desired
for all users or subsets of users.

The activation of these functionalities can be done without requiring a
code change in production, using a backoffice, a database query, etc.

In the case of Canary Releasing, the balancer is more complex and targets
a certain group of users within the server with the new release, such as
company employees, betatesters, users in a certain zone, etc.

Controlled deployment processes enable Zero Downtime Deployment
(ZDD) and above all increase the resilience of the system.

Blue-Green deployment is the standard and simplest deployment, where
(to simplify a lot) the "Blue" server corresponds to the current code in
production and the "Green" server contains the new release. Once the
release is ready, a balancer progressively disconnects the load from the
Blue server and directs it to the Green server.

In this way the new code is transparently available to all users.

Finally, Dark Launch is even more complex, with two types of productive
environments:

 "Stable Production" and "Production Testing".

Feature toggles

Canary Releasing

Blue-Green deploy

Dark Launch

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

34

25.

26.

27.

28.

In this way, in "Production Testing" we can activate functionalities only for
some users or even that are there but not visible, such as a hidden button
that is activated when the page loads and that allows us to evaluate the
performance of your transaction in a completely transparent way to the
user.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

35

For more than 100 years Lord Kelvin has been credited with the
phrase:

 "What is not defined cannot be measured. What is not measured
cannot be improved. What does not improve, always degrades".

Let's establish a solid foundation for quality control in your
application by defining clear and relevant metrics.

1 TIP

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

DEFINE QUALITY
CONTROL
METRICS IN
APPLICATION

36

TIP

Quality improvement is a living process, which feeds back on data to
maintain continuous improvement. If we do not have the right indicators,
we will not have the information to articulate improvement levers.

For this reason, we recommend carrying out a study of the weakest points
in the development cycle and determining SMART metrics with which to
establish KPIs on the basis of which we can work and evaluate results.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

In the field of software quality it is necessary to make decisions to improve
something that is degrading or at risk of degrading.

These decisions must be made based on information systems based on
indicators that allow us to plan, establish objectives, control results, etc.

Some examples could be the DLR (Defect Leaking Ratio), MTTR (Mean
Time To Recovery), MTTA (Mean Time to Acknowledge), etc.

37

Quality control metrics29.

Evaluating and categorising incidents according to their impact and
urgency allows you to prioritise and allocate resources appropriately
for their resolution.

This guarantees a quick and efficient response to problems that
arise in production and minimises their impact on users.

TIP

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

ENABLE
PROCESSES FOR
MONITORING,
EVALUATION AND PRIORITISATION
OF INCIDENTS IN PRODUCTION.

38

A monitoring system keeps track of the activities carried out by users,
applications and other services of our application. In this way, we can
supervise all the processes that are carried out and show the results in
different dashboards, reports, etc.
In the event that the user experience is degraded due to defects in the
code, hardware or network failures, resource exhaustion, configuration
errors, data inconsistency, etc., monitoring has a system of alerts that
activate protocols to solve the incident.

Incidents in the Productive environment can come from different sources:
a monitoring system, detection by the internal team, feedback from the
customer support team, etc.
In all cases, it will be necessary to reflect the incident as a task to be solved
and to characterise it. This characterisation generally involves assigning a
"Priority" and, optionally, a "Criticality".

The technical team generally has the vision to assign the criticality of an
issue but it is the Product team who usually has the criteria to assign the
priority (extreme cases are an exception), supported by the technical
team.

This criterion may or may not be defined, shared and agreed.

TIP

Real-time monitoring with a common priority
assessment criteria

We recommend that, within the monitoring system, different alerts be
configured depending on the nature of the incidents.
Among other things, this will allow you to organise them by priority or
notify different teams based on their type.

If you start from scratch, the suggestion is to begin with those incidents
that may affect security, brand image or user experience, those that may
involve economic damage or those that facilitate the activity of the
development team.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

39

30.

These alerts, once the issue has been confirmed, should be prioritised,
converted into tasks and incorporated into the development process.

One of the reasons for possible tension between the technical team and
the product team is the criteria for prioritising incidents.

To reduce this tension, our recommendation is to define, share and agree
on a procedure that reflects as objectively as possible the different criteria
and assessments that are made to assign a priority to an issue.

There will be times when this will not be necessary, but others when such
a document will help to eliminate ambiguities in criteria.

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

IT
Y

40

We are specialists in functional test
automation and its integration within the
software development cycle since 2004.

We help our clients, reducing their time to
market and increasing confidence in their
deployments thanks to SQA processes.

We reduce the time spent on product
testing, reducing costs.

We identify your bottlenecks before
going into production.

We act throughout the SDLC to improve
quality globally.

We analyse your product to detect
inefficiencies or vulnerabilities.

ABOUT US
GET TO KNOW US

R
E

D
S

A
U

C
E

 S
O

F
T

W
A

R
E

 Q
U

A
L

I
T

Y

41

LET'S WORK
TOGETHER

info@redsauce.net

Co-founder of Redsauce

Pablo Gómez

www.redsauce.net

42

Tell us about your case and we will get back to you as soon as possible. We
will create an action plan and take your development to the next level.

Send us an email to:

